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A B S T R A C T

The most prevalent and common type of dementia is Alzheimer's disease (AD). However, it is notable that very
few people who are suffering from AD are diagnosed correctly and in a timely manner. The definite cause and
cure of the disease are still unavailable. The symptoms might be more manageable and its treatment can be more
effective, when the impairment is still at an earlier stage or at MCI (mild cognitive impairment). AD can be
clinically diagnosed by physical and neurological examination, so there is an need for developing better and
efficient diagnostic tools for AD. In recent years, content-based image retrieval (CBIR) systems have been widely
researched and applied in many medical applications. Combining an automated image classification system and
the radiologist's professional knowledge, to increase the accuracy of prediction and diagnosis, were the main
motives. In this paper, a multistage classifier using machine learning, including Naive Bayes classifier, support
vector machine (SVM), and K-nearest neighbor (KNN), was used to classify Alzheimer's disease more acceptably
and efficiently. For this, MRI (Magnetic resonance imaging) scans were processed by FreeSurfer, a powerful
software tool suitable for processing and normalizing brain MRI images. We also applied a feature selection
technique - PSO (particle swarm optimization) to many feature vectors in order to obtain the best features that
represent the salient characteristics of AD. The results of the proposed method outperform individual techniques
in a benchmark database provided by the Alzheimer's Disease Neuroimaging Institute (ADNI).

1. Introduction

Alzheimer's Disease is a neurodegenerative brain disorder that is the
most prevalent and common type of dementia. Although, other diseases
and conditions of elder adults can also be the cause of dementia. AD is
not currently a curable disease but the progress of the disease can be
slowed if it is detected at an early or mild stage. AD causes pathological
changes in the brain and these changes can be detected before clinical
symptoms begin. From a bio-marker viewpoint, the chief pathologies of
AD are: progressive buildup of the beta-amyloid protein fragments
(plaques) outside the neurons, and the presence of twisted strands of
the tau protein (tangles) inside neurons, in the brain. These changes
eventually cause damage to, and death of, neurons.

All researchers of this domain focus on monitoring a patient's health
change, clinical progression of disease, and reaction to the therapy. It is
most challenging for them to find relevant bio-markers that represent

AD and MCI well. Their goal is not only to diagnose this disease at an
early stage, but also identify which people are most likely to develop
AD. Magnetic Resonance Imaging (MRI) is a non-invasive medical tool
that physicians use to diagnose patient disease or health conditions. The
MRI techniques generally include a powerful magnetic field, radio-
frequency pulses, and a computer to produce detailed pictures of all
internal body structures [1]. Individual or combined structural MRI
biomarkers such as shape and texture of the hippocampus, cortical
measurements, and volume measurements are used as biomarkers for
the multiclass classification of AD, mild cognitive impairment (MCI),
and normal control (NC) [2,3].

Recently, several machine learning techniques such as SVM (sup-
port vector machines), KNN (K-nearest neighbor) algorithm, NN
(Neural Network), Ensemble and regression models have been em-
ployed to classify AD, MCI and NC [1,7]. Sometimes, the classification
by one specific classifier does not provide the desired result due to
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certain factors, so there were attempts to use an ensemble of classifiers
and a multistage classifier for more correct classification results. The
ensemble approach uses a voting technique principally, and the mul-
tistage classifier uses output to one stage classifier as input to the next
stage classifier [8]. In this way, the advantages of individual classifiers
can be combined and disadvantages can be overcome.

As mentioned above, it remains a major challenge to select best
features that represent characteristics useful to discern between AD,
MCI and NC. In recent years, a content-based image retrieval system
and medical image classification were vigorously interactive to each
other and were used for detecting AD or MCI [3].

CBIR systems that enable users to compare contents of a query
image to a database directly are useful to obtain precise classification
results by combining automated medical image classification techni-
ques and the radiologists' professional knowledge and experiences.
Similarly, classification is used as a reference for retrieval, to increase
image retrieval performance and timeliness, considering large data-
bases.

In general, the process of image retrieval involves two principal
steps: the 1st step generates features that represent a given query image
and the second step compares these generated features to those already
stored in the database. The main issue is to find a satisfactory re-
presentation of the image content by using several image processing
and operation methods. Moreover, it is important to provide adequate
distributional distances between the features.

In this study, we will build a more effective classification system for
Alzheimer's disease at an earlier stage by using the swarm intelligence
feature selection technique and a multistage classifier. The AD MRI
scans used in this study were obtained from the Alzheimer's Disease
Neuroimaging Institute (ADNI) and processed via an MRI analyzing
software – FreeSurfer. Thus, brain structural and volumetric measure-
ments, and cortical thickness measurements, were used as feature
vectors for AD detection. We used the PSO algorithm to select best bio-
markers that represent AD or MCI and built a multistage classifier based
on the KNN and SVM classifiers.

2. Related work and literature review

We sought papers on data mining/machine learning in the health-
care domain, addressing diagnosis of AD and MCI. Many research ar-
ticles for detecting AD in its early stages were studied and the main
issues involved building more effective bio-markers of brain MRI scans
for AD detection. For selecting features relevant to AD, application of
several machine learning classifiers and the usage of image retrieval
systems have been a current field of interest.

Structural MRI is a powerful medical imaging technology that is
used in AD detection, and extraction of effective structural MRI bio-
markers of AD has become an active research area in this field, with
several biomarkers having been proposed, analyzed, and researched
[9–11]. In Ref. [12], there were attempts to use hippocampus volume as
a structural MRI biomarker of AD [13]. Volume is generally used as a
biomarker in several disease diagnoses, not only from the hippocampus
but also many regions of interests (ROI) such as the amygdala [14], the
ventricles [15], and whole brain [16], which have been also in-
vestigated. Another general type of biomarker for AD detection is
morphological measurement, including cortical thickness measurement
[17,18], shape [4,5], texture [19,20], and proximity of brain structures
[6].

Some MRI bio-markers have different information for diagnosis and
they complement each other. For example, biomarkers such as hippo-
campal volume provide diagnostic information independent of hippo-
campal shape and texture [4,20].

Moreover, the biomarkers of the different regions of the brain would
be sensitive and effective to different stages of this disease - AD, MCI
and NC. It was found previously that the hippocampus represents the
early stage of AD well and the cortex represents later stage well [21].

Hippocampal volume measurements seem better to separate mild cog-
nitive (MCI) and normal controls (NC) – from early stages of Alzhei-
mer's [22]. Cortical thickness measurements were shown to separate
MCI from AD [23]. Some investigators believed that a combination of
complementary biomarkers may have more efficient and better in-
formation for diagnostics of AD, MCI and NC, and proposed a combi-
nation of volume and cortical thinning biomarkers in their studies [10].

Considering different MRI biomarkers for AD detection, the stan-
dardized benchmark dataset would be requisite for comparisons of
approaches, and to understand the performance of different biomarkers
and their relationships.

The use of CAD in dementia analysis has been widely investigated
[12]. The medical image retrieval for AD based upon structural MRI
measures have been studied [3]. This study focused chiefly on im-
provement of the performance of image retrieval by using the smallest
number of features. The feature vector consisted of the volume and
thickness measurements of the brain, and then subsets of the feature
vector were selected by using the Correlation-based Feature Selection
(CFS) method to remove any irrelevant, possibly noisy, and redundant
data. The volumes and thickness measurements of the brain structure
obtained from Open Access Series of Imaging Studies (OASIS) were
analyzed in other research [1,2]. Modern machine learning techniques
such as SVM, KNN, and Back-Propagation Neural Network (BP-NN)
were used to separate AD and MCI from NC.

The work in Ref. [24] was modeled based on detail coefficients of 2-
level DWT, by generalizing the auto-regressive conditional hetero-
scedasticity (GARCH) statistical model and the parameter limits of the
GARCH model, considered as the primary feature vector. The KNN and
SVM models were used to derive the results. In another study [25] a
detection system was designed for breast cancer using Naive Bayes and
KNN. In their work, the authors reported that their suggested method
provided 96% accuracy for breast cancer categorization.

3. Proposed work

The proposed method is introduced with a purpose that is twofold:
(i) to find a model technique which efficaciously distinguishes AD from
MCI and NC; and (ii) to develop a multistage CAD system and study its
performance. In this work, we aimed to build an effective classification
system for AD by using the particle swarm intelligence feature selection
technique and a multistage classifier. The AD MRI scans used in this
study were obtained from the Alzheimer's Disease Neuroimaging
Institute (ADNI) and processed via a processing and analyzing software
- FreeSurfer; thus brain structural volumetric measurements and cor-
tical thickness measurements were developed and used as feature vec-
tors for AD detection. We selected the best biomarkers that represent
AD or MCI by using swarm intelligent algorithm - PSO and based on
them, built a multistage classifier of Naive Bayes, KNN and SVM for AD
detection and image retrieval.

3.1. Data and methodology

3.1.1. Dataset
Data used in the preparation for this study were obtained from the

Alzheimer's disease Neuroimaging Initiative (ADNI) database (adni.
loni.usc.edu). The ADNI was launched in 2003 as a public-private
partnership. The primary goal of ADNI has been to test whether serial
MRI, positron emission tomography (PET), other biological markers,
and clinical and neuropsychological assessment can be combined to
measure the progression of MCI and early AD. The ADNI was collec-
tively launched by six nonprofit organizations in 2003: The National
Institute139 on Aging (NIA), the National Institute of Biomedical
Imaging and Bioengineering (NIBIB), the Food and Drug Administration
(FDA), private pharmaceutical companies, and is available at adni.loni.
ucla.edu. ADNI has 3 phases: ADNI 1, ADNI GO, ADNI2 that vary in
their goals and cognitive stages. The stages provided in the dataset are
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the normal control (NC), significant memory concern (SMC), early mild
cognitive impairment (EMCI), mild cognitive impairment (MCI), late
mild cognitive impairment (LMCI), and Alzheimer's disease (AD). In
this research, MCI, NC, and AD data sets from ADNI were studied, with
their quantities highlighted in Table 1.

3.2. MRI pre-processing

Datasets may contain unusual data combinations, missing values,
and redundant information which can lead to misleading results.
Therefore, the quality of the data must be improved prior to running an
analysis. After obtaining the dataset from ADNI, it was processed fur-
ther using FreeSurfer. The preprocessing steps involved head motion
correction, compensation for slice-dependent time shift, smoothing, and
normalizing. Finally, we obtained a raw 66 volumetric and 72 thickness
measurements by FreeSurfer. Brain volume measurements, including
cerebral cortex and white-matter, 3rd and 4th ventricle, inferior lateral
ventricle, lateral ventricles, cerebellum cortex, caudate, putamen, pal-
lidum, cerebellum white-matter, hippocampus and the amygdala were
normalized by head size - intracranial volume. Fig. 1 represents MRI
preprocessing and normalization of images in axial, sagittal and coronal
planes. Obtained right and left thickness features are as follows:

Superior temporal, middle temporal, inferior temporal, entorhinal,
temporal pole, lateral orbitofrontal, para-hippocampal, medial orbito-
frontal, pars orbitalis, superior frontal, rostral middle frontal, inferior
parietal, supramarginal, caudal middle frontal, postcentral, precuneus,
pars opercularis, pars triangularis, precentral, paracentral, frontal pole,
superior parietal, transverse temporal, posterior, anterior, isthmus and
caudal cingulate, etc.

3.3. Feature selection

We have three high dimensional feature sets - the first 66 volumetric
measurements, second 72 thickness measurements, and the total of
them; these may include noisy (not very useful data in AD or MCI de-
tection) and redundant information. Therefore, it was required to re-
move noisy or redundant information and represent the dataset by a
smaller number of effective subset features to obtain better perfor-
mance and cut the calculation time cost.

Many research and clinical experiences were studied using statis-
tical analysis as mentioned in Ref. [20] for developing results in order
to select a feature rich data representation for AD or MCI. We analyzed
the effect of all of the biomarker features for AD and MCI detection and
integrated certain regions of interest. Then we selected and used only a
small numbers of features for AD and MCI detection. The optimum
number of features were extracted using the Particle Swarm Optimi-
zation - PSO algorithm.

3.4. PSO algorithm

The Particle Swarm Optimization algorithm developed by Kennedy
and Eberhart in 1995 [26] is an evolutionary computational technique.

PSO has shown satisfactory performance in many recent optimization
scheme projects. The algorithm was developed according to the co-or-
dinate movement dynamics of a group of animals such as flocking of
birds. This method optimizes a problem by trying to improve a candi-
date solution (the current location) regarding a given measurement of
quality (the fitness function). PSO performs searches using a population
(so-called swarm) of agents (or particles) [27]. Each particle i has a
current position loc loc loc loc( , , , )i i i i d

t
,1 ,2 ,= and a current flying

velocityvel vel vel vel( , , , )i i i i d
t

,1 ,2 ,= , where d is the problem dimension.
To discover the optimal solution, each particle moves in the direction of
its previous best position (p_best) and its best global position (g_best), as
in the following equations:
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Fig. 1. MRI preprocessing and normalization, axial, sagittal, coronal planes.

Table 1
Sample size of each cognition stage for train and test.

Class Number of Samples Train/Test

Alzheimer's Disease (AD) 178 70:30
Mild Cognitive Impairment (MCI) 160 70:30
Normal Cognition (NC) 137 70:30
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In the above formula, w is the weight inertia constant that is used to
balance the goal exploration and local exploration, c1, c2 are personal
and social learning factors, and r1 and r2 are random numbers between
0 and 1. The PSO algorithm showed satisfactory performance in the
optimization of linear and non-linear complicated systems with dif-
ferent complex constraints, in many applications.

4. Multistage classifier

There were attempts to use several classifiers such as single model,
including KNN, SVM, MLP, and ensemble model, including Voting,
Bagged Decision Tree and Gradient Boosting in many previous research
articles.

4.1. Gaussian Naive Bayes classifier

Bayesian learning is a successful method to learn the structure of
data in different applications. Bayesian methods provide several
structural learning algorithms. They provide models of causal influence,
and allow us to explore causal relationships, perform explanatory
analysis, and make predictions. Finally, Bayesian networks provide a
way to visualize results. Moreover, in a binary classification problem,
we have two classes, and each class has an associated feature set.

The Gaussian Naive Bayes (GNB) classifier is a simple probabilistic
classifier based on applying the Bayes theorem. GNB considers each
feature variable as an independent variable with each class (feature or
observation) assumed to be distributed according to a Gaussian dis-
tribution. This classifier can be trained very efficiently in supervised
learning, and can be used in complex real-world situations. The main
advantage of GNB is that it requires a small amount of training data
which is necessary for classification. For the respective feature set for
each class, a mean and variance is calculated where a normal dis-
tribution is then parameterized:

p x v c e( | ) 1
2 c

v µ

2

( )
2

c

c

2

2= =
(1)

where c is a class, v is an observation, c
2 is the variance for the selected

class, and µc is an associated mean of the class.
In the training stage, using class probabilities and conditional

probabilities, the class label of the testing data point is estimated. For a
two class data set, the data point is classified with respect to which class
probability is higher.

4.2. K- Nearest Neighbor (KNN)

The KNN classifier is well-known and the simplest machine learning
classifier. For training, a labeled database is given, and then an un-
labeled data point is classified based on the label of K data points
nearest the unlabeled points of the neighborhood. Here, K is the key
parameter for the algorithm. In this method, the distance between
testing data point x and training data points xi, I = 1, ….,n are calcu-
lated.

d x x x x( , ) | |E i
i

n

i
1

=
= (2)

x d x x d x x i j: ( , ) ( , ),E i E i< (3)

The nearest k points are determined. Testing data points are clas-
sified with respect to specified k nearest neighbors.

4.3. Support vector machine (SVM)

SVM is a supervised learning model, and one of the most well-
known classification algorithms; its usage has been beneficial in a large
number of applications including the prediction of disease from struc-
tural MRI scans. Fig. 2 represents the SVM classification graph. SVM

Algorithm 1: Standard PSO

fori from 1 to SN do

Pvel random Vel

Ploc random Loc

Pp_best Ploc

Pg_best Compare (Fit (Pp_best), Fit (Pg_best))

end for

while do

for i from 1 to SN do

Pvel
t+1 Update Vel (Pvel

t, Pp_best, Pg_best)

Ploc
t+1 Update Vel (Ploc

t, Pvel
t+1)

Pp_best Compare (Fit (Pp_best), Fit (Ploc
t+1))

Pg_best Compare (Fit (Pp_best), Fit (Pg_best))

end for

t t+1

val Fit (Pg_best)

end while
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classifies the data by a hyperplane that is defined as w x b 0T + = of a
very high-dimensional feature space, where b is the bias for the input
vector x, and w is the weight vector. A good separation is said to be the
nearest training data point belonging to any class. The more the dis-
tance of the margin, the lower will be the generalization error of the
classifier. Assuming N training data samples

x y x y x y{( , ), ( , ), , ( , )}N N1 1 2 2 are given, x Ri
d is a set of feature vectors

and y { 1,1}i is the class label. Then the classification problem can be
expressed by the following minimization problem:

w wmin (
2

)w b
T

, (4)

s t y w x b i n. . : ( ) 1, 1,i
T

i + > = (5)

A new data object x can be classified with the following
functiong x w x b( ) sgn( )T= + .

4.3.1. 2 stage classifiers
Recently, research on multistage classifiers were widely studied in

order to increase performance of clustering and classification or pre-
diction, because sometimes the direct approach to classification doesn't
provide desired results. Several types of multistage classifiers were
proposed. The front stage classifier can be built, a classifier which uses
small dimension features and of which calculation cost (time) is low,
and a back stage classifier can use more features than the previous
stages, and its performance is high even though its calculation cost
(time) is also high. A multistage classifier for detecting AD, MCI and NC
classes is shown in Fig. 3.

If the front stage classifier classifies an input object belonging to any
class at a reasonable level, the next stage classifier is not needed and the
classification procedure terminates. But if the classification result of the
front stage is inadequate, further input stages are needed to obtain more
precise classification results.

Here we used the 2-stage classifier:

a) 1st stage classifier - Gaussian Naive Bayes Classifier, classifies the
probability of whether the object belongs to AD/MCI/NC class or
uncertain (reject).

b) 2nd stage classifier - SVM classifier and KNN classifier, classify ob-
ject on the performance basis of 1st stage classifier.

If the first stage classifies the object as an AD class with a high-level
of confidence, the procedure stops generating output results. If the first
stage classifies object as MCI and NC class with high-levels, we input

this object to a 2nd classifier (binary SVM classifier) and then analyze
the classification results generated by this 2nd classifier.

If the result of the first stage is uncertain, this object is transferred to
a 2nd classifier (KNN classifier in this case). Thus, Gaussian Naive Bayes
Classifier is trained as a binary classifier (for detection of AD, MCI and
NC) and the SVM classifier is also trained as a binary classifier (for
classification of MCI or NC) whereas, while the KNN classifier is trained
as a multiclass classifier (for classification of all AD, MCI and NC).

4.4. Image retrieval

Content-based image retrieval - CBIR systems aim to retrieve similar
images to query an image from a database by comparing the similarities
of image features extracted from the query image against another in the
database instead of using meta-tags or index. In medical prediction,
CBIR system plays a key role to combine automated image processing
and classification techniques with the radiologist's professional
knowledge and previous experience, to obtain more accurate clinical
predictions. In general, CBIR systems consist of two parts, such as ex-
traction of features from image and measurement similarities, though it

Fig. 3. Multistage classifier for detecting AD, MCI and NC classes.

Fig. 4. Image retrieval system with classification.

Fig. 2. Support Vector Machine classification.
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may require an inordinate amount of time if the database's size is large.
Consistently, the CBIR systems with feedback as classification results
were proposed for various MRI based disease detection problems. Fig. 4
shows the Image retrieval system.

In this system, the query image is first classified by trained classi-
fiers, and only then, compared with images belonging to the same class
with a query image in the database, that is, to speed up retrieval time
and increase performance.

5. Experiments and results

The current paper used a system comprising a core i3 processor with
2.3 GHz speed, 8 GB RAM and the Windows operating system. The data
was obtained from ADNI, which was normalized prior to gain selective
features. Normalization improves the accuracy, which is shown in
Fig. 5.

We used 124 AD objects, 112 MCI objects and 96 NC objects for
training model, and 54 AD objects, 48 MCI objects and 41 NC objects
for evaluating the performance of prediction by model. The names of
the volume and thickness features selected by PSO are shown in
Appendix 1.

In order to evaluate the efficiency of feature selection by the PSO
algorithm, we applied our proposed approach - 2 stage classifier to
three original feature sets (volume, thickness, and the total of them)
and then applied it to three subsets of selected features. 5-fold cross

validation was applied for all classification tasks to assess the average
and general performance. The results are represented in the following
Table 2.

As seen in Table 2, thickness features represent AD or MCI states
better than volume features; also, we can see the selected features by
PSO improved the performance of AD or MCI detection.

Table 3 shows all of the details of classification performances of our
approach, using subsets of selected volume and thickness features for 5-
fold cross validation.

Table 3 also shows that classification with thickness features pro-
vide best performance and our approach for AD detection is reasonably
improved. But as seen in Table 4, the fault alarm rates for MCI and NC
stages are larger than for AD stages. This means that extracted cortical
thickness and volume features, and selected features by PSO, are more
suitable for AD detection than MCI and NC detection. We examined the
performance of the image retrieval scheme on the current database: a
reasonable speed up and improved retrieval accuracy were shown. The
total time taken for retrieval of 475 query images, and retrieval accu-
racy on several experimental cases, are represented in the following
Table 5. Table 6 shows a performance comparison of the different en-
semble methods used in the study.

We derive the accuracy score by comparing the true class label, y*,
to the predicted class label, yˆ*, using the symmetric threshold of η =

Fig. 5. Accuracy before and after normalization.

Table 2
The accuracy of classification using original and selected features.

Thickness features Volume features All features

Original (66) Selected (50) Original (72) Selected (38) Original (138) Selected (88)
0.627 0.802 0.544 0.713 0.723 0.813

Table 3
Classification performances of 2-stage classifier.

Features Accuracy Sensitivity Specificity Precision

AD MCI NC AD MCI NC AD MCI NC AD MCI NC

Thickness 0.880 0.869 0.855 0.788 0.787 0.838 0.935 0.910 0.862 0.882 0.815 0.721
Volume 0.811 0.818 0.798 0.755 0.708 0.666 0.844 0.872 0.852 0.746 0.735 0.651
Total 0.886 0.884 0.856 0.788 0.800 0.861 0.944 0.927 0.854 0.894 0.847 0.711

Table 4
Confusion Matrix (a,b,c), rows are predicted and columns are true class.

(a) Thickness

NC AD MCI

NC 36 2 4
AD 6 45 3
MCI 9 2 37

(b) Volume

NC AD MCI

NC 26 8 8
AD 11 38 5
MCI 6 10 32

(c) Total

NC AD MCI

NC 36 3 3
AD 5 45 4
MCI 7 3 38
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0.5. If the true and predicted class labels match, we assign a score of
+1, otherwise a score of 0. The final score is calculated by averaging
the accuracy score over the predictions made. Thus, the total accuracy
is-

AC TP TN
TP FN TN FP

= +
+ + + (6)

where TP, FP, TN and FN denote the number of true positive, false
positive, true negative and false negative predictions.

ii) Sensitivity and specificity:

The accuracy is a weighted average of the sensitivity and specificity
scores of the classifier. The sensitivity score is defined as

SS TP
TP FN

=
+ (7)

which measures the accuracy of the classifier at detecting ‘disease’ state
(i.e. y = + 1) subjects. The specificity score is defined as

SC TN
TN FP

=
+ (8)

which measures the accuracy of the classifier at detecting ‘healthy’ or
‘control’ state (i.e. y = −1) subjects. The specificity is equal to one
minus the false positive rate.

Normalization increases the accuracy of the results, as can be seen
in Fig. 5.

6. Discussion and conclusion

The selection of effective and better biomarkers (features) of brain
MRI scans for AD, and the multistage classification model for AD de-
tection and image retrieval, were investigated in this paper. The swarm
intelligent technique - PSO for feature selection used in this study was
performed to reflect the brain structural change, which is related to the
clinical progress of AD. The feature selection technique was examined
using several feature sets from MRI scans: cortical thickness features,
volume features, as well as a combination of thickness and volume.

The multistage classifier used in this thesis produced a good per-
formance for AD detection as compared with previous individual ma-
chine learning approaches, such as SVM and KNN. Also, the image re-
trieval scheme, following the proposed method for AD classification,
produced good results. Significant improvements were observed in

retrieval speed and accuracy during the implementation.
However, despite this potential improvement, there are some pro-

blems for discriminating MCI and NC states versus AD. As seen in
Table 4 (confusion matrix), the fault alarm rate for the AD class was
smaller than the other classes - NC and MCI. This means that advanced
biomarkers and biochemical information are needed to combine
structural MRI biomarkers for better performance of the diagnosis be-
tween MCI and NC classes. Additionally, the selection of a first stage
classifier is important in the building of multistage classifier. The final
purpose of AD detection is to diagnose the disease at an earlier or mild
stage. Therefore, research for extraction and selection of effective bio-
markers that represent MCI and NC stages should be further studied in
future work.
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Table 5
Evaluation of the retrieval performance on several feature sets (total 475 query images).
i) Accuracy:

Features Scenario

All thickness All volume All combination Selected thickness Selected volume Selected combination

Time (Sec) 0.910 0.905 1.182 0.841 0.804 1.104
Accuracy 0.787 0.675 0.787 0.816 0.728 0.823

Table 6
Comparison of different methods.

Algorithm Accuracy Sensitivity Specificity Precision

SVM + KNN 89.22 ± 1.89 82.42 ± 1.26 78.63 ± 1.46 72.31 ± 1.12
BN + SVM + KNN 90.47 ± 1.24 88.62 ± 1.62 90.15 ± 1.84 80.26 ± 2.12
BN + SVM + KNN + PSO 96.31 ± 1.22 91.27 ± 1.44 89.90 ± 1.14 96.05 ± 1.21

Precision Rate: P = TP/(TP + FP).
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Appendix 1. Selected Thickness and Volume features by PSO algorithm

Thickness Volume

1 lh_bankssts_thickness Left-Inf-Lat-Vent
2 lh_caudalanteriorcingulate_thickness Left-Cerebellum-White-Matter
3 lh_caudalmiddlefrontal_thickness Left-Cerebellum-Cortex
4 lh_fusiform_thickness Left-Thalamus-Proper
5 lh_inferiorparietal_thickness Left-Caudate
6 lh_isthmuscingulate_thickness Left-Putamen
7 lh_lateralorbitofrontal_thickness Left-Pallidum
8 lh_lingual_thickness Brain-Stem,
9 lh_medialorbitofrontal_thickness Left-Hippocampus
10 lh_middletemporal_thickness CSF
11 lh_parahippocampal_thickness Left-Accumbens-area
12 lh_paracentral_thickness Left-VentralDC
13 lh_parsorbitalis_thickness Left-vessel
14 lh_parstriangularis_thickness Left-choroid-plexus
15 lh_posteriorcingulate_thickness Right-Lateral-Ventricle
16 lh_precuneus_thickness Right-Cerebellum-White-

Matter
17 lh_rostralanteriorcingulate_thickness Right-Hippocampus
18 lh_rostralmiddlefrontal_thickness Right-Amygdala
19 lh_superiorfrontal_thickness Right-choroid-plexus
20 h_superiorparietal_thickness 5th-Ventricle
21 lh_superiortemporal_thickness non-WM-hypointensities
22 lh_supramarginal_thickness Left-non-WM-hypointensities
23 lh_temporalpole_thickness Right-non-WM-hypointensities
24 lh_transversetemporal_thickness CC_Posterior
25 lh_insula_thickness CC_Central
26 lh_MeanThickness_thickness BrainSegVolNotVentSurf
27 rh_caudalanteriorcingulate_thickness lhCortexVol
28 rh_cuneus_thickness rhCortexVol
29 rh_entorhinal_thickness CortexVol
30 rh_fusiform_thickness rhCerebralWhiteMatterVol
31 rh_inferiorparietal_thickness SubCortGrayVol
32 rh_inferiortemporal_thickness TotalGrayVol
33 rh_isthmuscingulate_thickness SupraTentorialVol
34 rh_lateraloccipital_thickness SupraTentorialVolNotVent
35 rh_lateralorbitofrontal_thickness SupraTentorialVolNotVentVox
36 rh_lingual_thickness MaskVol
37 rh_medialorbitofrontal_thickness MaskVol-to-eTIV,
38 rh_middletemporal_thickness lhSurfaceHoles
39 rh_parsorbitalis_thickness
40 rh_pericalcarine_thickness
41 rh_postcentral_thickness
42 rh_precentral_thickness
43 rh_precuneus_thickness
44 rh_rostralanteriorcingulate_thickness
45 rh_rostralmiddlefrontal_thickness
46 rh_superiorfrontal_thickness
47 rh_superiorparietal_thickness
48 rh_superiortemporal_thickness
49 rh_insula_thickness
50 rh_MeanThickness_thickness
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